Determinants of Initiation Codon Selection during Translation in Mammalian Cells
نویسندگان
چکیده
Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, including AUG codon-accessibility and 5' leader length have been proposed as potential determinants that affect where ribosomes initiate translation. To explore this issue, we performed studies using synthetic mRNAs with two in-frame AUG codons-both in excellent context. Open reading frames initiating at AUG1 and AUG2 encode large and small isoforms of a reporter protein, respectively. Translation of such an mRNA in COS-7 cells was shown to be 5' cap-dependent and to occur efficiently from both AUG codons. AUG codon-accessibility was modified by using two different elements: an antisense locked nucleic acid oligonucleotide and an exon-junction complex. When either element was used to mask AUG1, the ratio of the proteins synthesized changed, favoring the smaller (AUG2-initiated) protein. In addition, we observed that increased leader length by itself changed the ratio of the proteins and favored initiation at AUG1. These observations demonstrate that initiation codon selection is affected by various factors, including AUG codon-accessibility and 5' leader length, and is not necessarily determined by the order of AUG codons (5'→3'). The modulation of AUG codon accessibility may provide a powerful means of translation regulation in eukaryotic cells.
منابع مشابه
Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon.
During the initiation stage of eukaryotic mRNA translation, the eIF4G (eukaryotic initiation factor 4G) proteins act as an aggregation point for recruiting the small ribosomal subunit to an mRNA. We previously used RNAi (RNA interference) to reduce expression of endogenous eIF4GI proteins, resulting in reduced protein synthesis rates and alterations in the morphology of cells. Expression of EIF...
متن کاملStringency of start codon selection modulates autoregulation of translation initiation factor eIF5
An AUG in an optimal nucleotide context is the preferred translation initiation site in eukaryotic cells. Interactions among translation initiation factors, including eIF1 and eIF5, govern start codon selection. Experiments described here showed that high intracellular eIF5 levels reduced the stringency of start codon selection in human cells. In contrast, high intracellular eIF1 levels increas...
متن کاملTISdb: a database for alternative translation initiation in mammalian cells
Proper selection of the translation initiation site (TIS) on mRNAs is crucial for the production of desired protein products. Recent studies using ribosome profiling technology uncovered a surprising variety of potential TIS sites in addition to the annotated start codon. The prevailing alternative translation reshapes the landscape of the proteome in terms of diversity and complexity. To ident...
متن کاملDHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context
During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal sca...
متن کاملUpf1 Phosphorylation Triggers Translational Repression during Nonsense-Mediated mRNA Decay
In mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010